Epitomic Variational Autoencoder

نویسندگان

  • Serena Yeung
  • Anitha Kannan
  • Yann Dauphin
  • Li Fei-Fei
چکیده

In this paper, we propose epitomic variational autoencoder (eVAE), a probabilistic generative model of high dimensional data. eVAE is composed of a number of sparse variational autoencoders called ‘epitome’ such that each epitome partially shares its encoder-decoder architecture with other epitomes in the composition. We show that the proposed model greatly overcomes the common problem in variational autoencoders (VAE) of model over-pruning. We substantiate that eVAE is efficient in using its model capacity and generalizes better than VAE, by presenting qualitative and quantitative results on MNIST and TFD datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tackling Over-pruning in Variational Autoencoders

Variational autoencoders (VAE) are directed generative models that learn factorial latent variables. As noted by Burda et al. (2015), these models exhibit the problem of factor overpruning where a significant number of stochastic factors fail to learn anything and become inactive. This can limit their modeling power and their ability to learn diverse and meaningful latent representations. In th...

متن کامل

Variational Autoencoder based Anomaly Detection using Reconstruction Probability

We propose an anomaly detection method using the reconstruction probability from the variational autoencoder. The reconstruction probability is a probabilistic measure that takes into account the variability of the distribution of variables. The reconstruction probability has a theoretical background making it a more principled and objective anomaly score than the reconstruction error, which is...

متن کامل

Stick-breaking Variational Autoencoders

We extend Stochastic Gradient Variational Bayes to perform posterior inference for the weights of Stick-Breaking processes. This development allows us to define a Stick-Breaking Variational Autoencoder (SB-VAE), a Bayesian nonparametric version of the variational autoencoder that has a latent representation with stochastic dimensionality. We experimentally demonstrate that the SB-VAE, and a sem...

متن کامل

Least Square Variational Bayesian Autoencoder with Regularization

In recent years Variation Autoencoders have become one of the most popular unsupervised learning of complicated distributions. Variational Autoencoder (VAE) provides more efficient reconstructive performance over a traditional autoencoder. Variational auto enocders make better approximaiton than MCMC. The VAE defines a generative process in terms of ancestral sampling through a cascade of hidde...

متن کامل

Squeezed Convolutional Variational AutoEncoder for Unsupervised Anomaly Detection in Edge Device Industrial Internet of Things

In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017